
© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Application modernization:
monolith to microservices
with containers
David Stielstra
Solutions Architect
Amazon Web Services

Kiran Palsam
Solutions Architect
Amazon Web Services

C O L U M B U S L E A R N I N G D A Y S

© 2024, Amazon Web Services, Inc. or its affiliates.

Agenda

• Considerations for application modernization
• Primer – monolith vs. microservices
• Where do we start?
• Challenges and learnings
• Using containers

2

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Considerations for
application modernization

3

© 2024, Amazon Web Services, Inc. or its affiliates.

Considerations for application modernization

• Application redesign patterns

• Data layer

• Synchronous to asynchronous

• Orchestration

• DevSecOps

• Monitoring

• Containerization Source: Amazon Freeway

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Monolith v. microservices

5

© 2024, Amazon Web Services, Inc. or its affiliates.

What is a monolith?

© 2024, Amazon Web Services, Inc. or its affiliates.

What are microservices?

© 2024, Amazon Web Services, Inc. or its affiliates.

Basic concepts and definitions

Completely
independent

Monolith MicroservicesMiniservices

?

© 2024, Amazon Web Services, Inc. or its affiliates.

Original monolithic application - example

• On-premises

• Tightly coupled application components

• Load balancer

• Relational database

Load
balancerBrowser Database

Webserver

Data access service

App service

Visualization
service

© 2024, Amazon Web Services, Inc. or its affiliates.

Monolithic applications – challenges

Hard to scale Can’t handle
component

failures

Slow
deployment

process

Limited options

© 2024, Amazon Web Services, Inc. or its affiliates.

Drivers to switch to microservices

- Time to organization value

- Time to repair

- Enabled hyper scaling

- Technologically independent

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Where do we start?

12

© 2024, Amazon Web Services, Inc. or its affiliates.

1. Identify
components

Visualization
service

Webserver

Data Access Service

App service

Database

2. Outline
requirements

3. Map to
AWS resources

• State?
• Compute?
• API?
• Storage?
• Security?
• Managed?
• Estimated scale?
• etc.

Where do we start? Discover

Amazon
DynamoDB

AWS Lambda

Amazon API
Gateway

Amazon Simple
Storage Service

© 2024, Amazon Web Services, Inc. or its affiliates.

The Strangler Fig

© 2024, Amazon Web Services, Inc. or its affiliates.

Recommended pattern
Monolith

Strangler application pattern:
https://www.martinfowler.com/bliki/StranglerApplication.html

https://www.martinfowler.com/bliki/StranglerApplication.html

© 2024, Amazon Web Services, Inc. or its affiliates.

Technical requirements
• API-driven
• Independent DBs
• Containerized or serverless

Organizational requirements
• Dedicated product team
• Small frequent incremental changes

Design, develop, deploy - A pilot

Webserver

Data Access Service

App service

Visualization
service

In
te

gr
at

io
n

se
rv

ic
es

In
fo

Se
c

se
rv

ic
es

APIs

APIs

APIs

APIs

Hooks

Hooks

Logging

Monitoring

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Challenges and learnings

17

© 2024, Amazon Web Services, Inc. or its affiliates.

Challenge - Centralized database

Applications often have a monolithic
data store:

• Difficult to make schema changes

• Technology lock-in

• Vertical scaling

• Single point of failure

user-svc account-svccart-svc

DB

© 2024, Amazon Web Services, Inc. or its affiliates.

Best practice: decentralized data stores

• Polyglot persistence

• Each service chooses its data store technology

• Low impact schema changes

• Independent scalability

• Data is gated through the service API account-svccart-svc

Amazon DynamoDB Amazon RDS

user-svc

Amazon ElastiCache Amazon RDS

© 2024, Amazon Web Services, Inc. or its affiliates.

Challenge - transactional integrity

• Moving to microservices introduces
polyglot persistence and asynchronous
behaviors

• How do we handle transactional
integrity?

• Event-sourcing: Capture changes as
sequence of events

• Staged commit

• Rollback on failure

Order Service

Customer Service

Payment Service

Order

PaymentMethod
• ByCreditCard
• ByOnlinePay
• ByAccount

Customer DeliveryInfo

PaymentInfo

PayForOrderID

?

?

© 2024, Amazon Web Services, Inc. or its affiliates.

Best practice: event sourcing pattern

Order Service

Order

PaymentMethod
• ByCreditCard
• ByOnlinePay
• ByAccount

Customer serviceOrder service

Event Store
Order123456

OrderCreated

OrderApproved

OrderPaid

OrderShipped

……..

ID Status Date Total …

…

123456 Ordered 2020.03.01 232434.94 …

Add event
Find event Subscribe event

© 2024, Amazon Web Services, Inc. or its affiliates.

Challenge - report errors / rollback

• What if functions fail? (business logic failure, not code failure)

• Create a “Transaction Manager” microservice that notifies all
relevant microservices to rollback or take action

• Amazon DynamoDB is the trigger for the clean-up function
(could be Amazon SQS, Amazon Kinesis etc.)

• Use Correlation ID to identify relations

cust-svc

Transaction
Manager
Function

Amazon DynamoDB
Streams

API Call

Error Table

© 2024, Amazon Web Services, Inc. or its affiliates.

Challenge: report errors / rollback

ERROR

Amazon
DynamoDB
Error Table

Transaction
Manager
Function

Amazon
Kinesis

Error Stream

Amazon SQS
Error Queue

Rollback
(correlation-id)

Rollback
(correlation-id)

Rollback
(correlation-id)

Rollback
(correlation-id)

© 2024, Amazon Web Services, Inc. or its affiliates.

Best practice: microservice owns rollback

• Every microservice should expose its own “rollback”
method

• This method could just rollback changes, or trigger
subsequent actions

• Could send a notification

• If you implement staged commit, also expose a commit
function

Microservice

Function 1

Rollback

Commit
(optional)

Amazon DynamoDB

© 2024, Amazon Web Services, Inc. or its affiliates.

Best practice: use correlation IDs

09-02-2015 15:03:24 ui-svc INFO [uuid-123] ……

09-02-2015 15:03:25 catalog-svc INFO [uuid-123] ……

09-02-2015 15:03:26 checkout-svc ERROR [uuid-123] ……

09-02-2015 15:03:27 payment-svc INFO [uuid-123] ……

09-02-2015 15:03:27 shipping-svc INFO [uuid-123] ……

ui-svc catalog-
svc

checkout-
svc

shipping-
svc

payment-
svc

request correlation id:
“uuid-123”

correlation id:
“uuid-123”

correlation id:

“uuid-123”

correlation id: “uuid-123”

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Using Containers

26

© 2024, Amazon Web Services, Inc. or its affiliates.

Containers and microservices

• Do one thing, really well

• Any app, any language

• Test and deploy same artifact

• Self-contained services

• Isolated execution environment

• Faster startup

• Scaling and upgrading

Container Container

Container Container

© 2024, Amazon Web Services, Inc. or its affiliates.

Choices for container workloads

Amazon EC2 AWS Fargate Amazon EC2 AWS Fargate

Orchestrator

Compute

© 2024, Amazon Web Services, Inc. or its affiliates.

Arkansas Admin Office of the Courts

Total cost of ownership
reduced 40 percent

https://aws.amazon.com/blogs/modernizing-with-aws/ar-admin-office-courts-
reduced-tco-dotnet-modernization/

Goal: Modernize the Court Management System.

Solution: Containerize .NET applications using
service-oriented application design.

“A core component of the Arkansas
Judiciary’s Strategic Plan is to
Embrace Technology. ‘The courts
must respond to the changing
technological environment by
providing court users remote access
to information, records, and
services.’ AWS is helping us to
provide those services through this
project.” – Marty Sullivan, Arkansas
State Court Administrator

https://aws.amazon.com/blogs/modernizing-with-aws/ar-admin-office-courts-reduced-tco-dotnet-modernization/
https://aws.amazon.com/blogs/modernizing-with-aws/ar-admin-office-courts-reduced-tco-dotnet-modernization/

© 2024, Amazon Web Services, Inc. or its affiliates.

Useful resources

Amazon ECS workshop – https://ecsworkshop.com/

Amazon EKS workshop – https://www.eksworkshop.com/

Monolith to microservices workshop – https://aws.amazon.com/getting-started/hands-

on/break-monolith-app-microservices-ecs-docker-ec2/

Strangler application pattern – https://martinfowler.com/bliki/StranglerFigApplication.html

https://ecsworkshop.com/
https://www.eksworkshop.com/
https://aws.amazon.com/getting-started/hands-on/break-monolith-app-microservices-ecs-docker-ec2/
https://aws.amazon.com/getting-started/hands-on/break-monolith-app-microservices-ecs-docker-ec2/
https://martinfowler.com/bliki/StranglerFigApplication.html

© 2024, Amazon Web Services, Inc. or its affiliates.

Next steps

- AWS Free Tier
- Training / workshops
- AWS Ask-an-Expert booth

Public Sector Blog SLG Webpage Contact Us

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates. 32

Application modernization, security,
and governance – up next

11:40a Resilience best practices:
 Well-architected application on AWS
1:30p One Observability Workshop
3:10p Security is top priority

© 2024, Amazon Web Services, Inc. or its affiliates. © 2024, Amazon Web Services, Inc. or its affiliates.

Thank you!
David Stielstra
Solutions Architect
dstiel@amazon.com

Kiran Palsam
Solutions Architect
kapalsam@amazon.com

Please complete the session survey
by scanning the QR code

Track: Application Modernization and Security
Session: Application Modernization: Monolith
to Microservices with Containers

