

AI/ML for Data and Analytics

Aditya Challa Sr. Solutions Architect, AWS aditchal@amazon.com

Modern data strategy in action

The convergence of traditional data silos into data lakes

aws

Al/Machine learning (ML) is at an inflection point Key drivers: Compute capacity increase | Data growth | Model

Key drivers: Compute capacity increase | Data growth | Model sophistication

AI, ML, Deep learning?

Artificial intelligence (AI)

Any technique that allows computers to mimic human intelligence using logic, if-then statements, and machine learning

Machine learning (ML)

A subset of AI that uses machines to search for patterns in data to build logic models automatically

Deep learning (DL)

A subset of ML composed of deeply multi-layered neural networks that perform tasks like speech and image recognition

Generative AI

Powered by large models that are pretrained on vast corpuses of data and commonly referred to as foundation models (FMs)

Challenges we are hearing from state and local government customers

Demand for government services is rising while resources and capacity to deliver them **aren't keeping pace**

₹<u>@</u>;∕

Citizens increasingly expect government to provide modern digital experiences for conducting online transactions

Aging infrastructure for data capture, storage, and management creates friction for leveraging data for analytics and machine learning

Complex security, privacy, and compliance requirements create barriers to change and block adoption of many SaaS solutions

Risk averse culture and institutional inertia slow innovation

Machine learning is going mainstream in public sector

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Top AI/ML use cases for state and local government

	SampleOutput.pdf (1 page) ~
	Employment Applicat:
This is a sample em and answer all ques	ployment application form tions.
Personal Information	
Full Name:	Jane Doe
Phone Number:	555-0100
Home Address:	123 Any Street, Any Town, USA
Mailing Address:	Same as home address
Work History	
Current Company:	Any Company (2018-Current)
	Any Role
Company#1:	Previous Company # 1 (2014-20
	Previous Role # 1
Company#2:	Previous Company #2 (2010-201
	Previous Role # 2

Speech and language Intelligent document processing

Computer vision

Predictions and insights

Top AI/ML use cases for state and local government

This is a sample en and answer all ques	ployment application for stions.
Full Name:	Jane Doe
Phone Number:	555-0100
Home Address:	123 Any Street, Any Town, US
Mailing Address:	Same as home address
Work History	
Current Company:	Any Company (2018-Current)
	Any Role
Company#1:	Previous Company # 1 (2014-
	Previous Role # 1
Company#2:	Previous Company #2 (2010-2)
	Previous Role # 2

Speech and language Intelligent document processing

Computer vision

Predictions and insights

AI/ML-Enabled Citizen engagement

Engage citizens and drive improvements in customer satisfaction

- Improve contact center agent effectiveness with real-time translation and decision support using Amazon Connect and Contact Center Intelligence
- Analyze call and text interactions with citizens to spot issues and trends and drive improvement
- Improve self service

AWS CCI Solutions

Add AI/ML to existing contact centers

Using AI to improve agent efficiency

"During peak hours, previously you're 45-50 minutes on hold, and now that's has been reduced to about three and a half minutes. One of the other benefits we've gotten from Amazon Connect is sentiment analysis. On a call, we get real-time feedback on whether or not the customer was happy, frustrated, or angry..."

—Benny Chacko, Deputy General – LA County Internal Services Department

Top AI/ML use cases for state and local government

	a SampleOutput.pdf (1 page) ~
	Employment Application
This is a sample of	ployment application form
and answer all ques	stions.
Personal Information	
Full Name:	Jane Doe
Phone Number:	555-0100
Home Address:	123 Any Street, Any Town, USA
Mailing Address:	Same as home address
Work History	
Current Company:	Any Company (2018-Current)
	Any Role
Company#1:	Previous Company # 1 (2014-20
	Previous Role # 1
Company#2:	Previous Company #2 (2010-201
	Previous Role # 2

Speech and language

Intelligent document processing

Predictions and insights

Extract insights from unstructured content

Extract insights from unstructured documents and forms, like images, PDFs, and audio

- Analyze text with natural language processing (NLP) to identify topics, extract entities, understand sentiment, and classify documents with Amazon Textract, Amazon Rekognition, and Amazon Comprehend
- Translate content at scale with Amazon Translate

King County Assessor's Office

CHALLENGE

Reduce data entry, eliminate data errors, and improve data time lines.

SOLUTION

Intelligent documents processing for documents and electronic files, streamlining & unlock data and information from paper documents and electronic files

RESULTS

King County employees will focus on higher value, more satisfying work, and ultimately help the County realize its vision for connected communities, connected data, and connected government."

This Photo by Unknown Author is licensed under CC BY-SA

Top AI/ML use cases for state and local government

his is a sample em and answer all ques	ployment application form									
Full Name:	Jane Doe									
Phone Number:	555-0100									
Home Address:	123 Any Street, Any Town, USA									
Mailing Address:	Same as home address									
Work History										
Current Company:	Any Company (2018-Current)									
	Any Role									
Company#1:	Previous Company # 1 (2014-2									
	Previous Role # 1									
Company#2:	Previous Company #2 (2010-20									
	Previous Role # 2									

Speech and language Intelligent document processing

Computer vision

Predictions and insights

Content analysis and object detection

Extract insights and identify objects of interest from large volumes of images and videos with Amazon Rekognition

- Detect personal protective equipment (PPE) to improve worker safety
- Analyze vehicle traffic and pedestrian and bicycle safety
- Detect objects of interest in video and reduce human effort required to review footage

Assessing damage from natural disasters

EagleView runs deep learning models on AWS to make quicker, more accurate assessments of property damage within 24 hours of a natural disaster. Amazon Elastic Inference makes those workflows more cost effective at scale.

Top AI/ML use cases for state and local government

This is a sample en and answer all ques	ployment application form
Full Name:	Jane Doe
Phone Number:	555-0100
Home Address:	123 Any Street, Any Town, USA
Mailing Address:	Same as home address
Work History	
Current Company:	Any Company (2018-Current)
	Any Role
Company#1:	Previous Company # 1 (2014-20
	Previous Role # 1
Company#2:	Previous Company #2 (2010-201
	Previous Role # 2

Speech and language Intelligent document processing

Predictions and insights

Fraud detection and prevention

Detect and prevent fraud, waste, and abuse

- Enhance accuracy and speed to help detect and prevent waste fraud and abuse
- Managed service approach with prebuilt ML models for fraud detection
- Supervised and unsupervised models for developing highly targeted models to utilize customer data as part of fraud prevention efforts

Identify fraud and other anonymous activities

FINRA, one of the largest security regulators in the United States, was established to monitor and regulate financial trading practices; using Amazon EMR, FINRA can capture, analyze, and store a daily influx of 135 billion records in order to identify fraud and other anonymous activities

Machine learning to forecast trends and support decisions

Accurate, time series forecast with machine learning

- Predicting service demand or program activities
- Allocating resources to optimize impact and outcomes for citizens
- Financial planning and revenue / cost forecasts

Predictions and forecasts from IoT and sensor data

Leverage data from smart cities and facilities

- Smart cities
- Predictive maintenance
- Facility management

Learn more about Amazon Monitron

What and with whom would you like to explore?

	SampleOutput.pdf (1 page) ~
This is a sample empland answer all quest	Employment Applicat
Bergerel Information	
Full Name:	Jane Doe
Phone Number:	555-0100
Home Address:	123 Any Street, Any Town, USA
Mailing Address:	Same as home address
Work History	
Current Company:	Any Company (2018-Current)
	Any Role
Company#1:	Previous Company # 1 (2014-2
	Previous Role # 1
Company#2:	Previous Company #2 (2010-20
	Previous Role # 2

Speech and language

Intelligent document processing

Computer vision

Predictions and insights

The AWS AI/ML stack

BROADEST AND MOST COMPLETE SET OF MACHINE LEARNING CAPABILITIES

AI SERVICES	SPECIALIZED	BUSINESS PROCESSES Amazon Personalize Amazon Forecast Amazon Fraud Detector	SEARCH Amazon Kendra	CONVERSATION Amazon Lex Amazon Transcribe Call Analytics Contact Lens Voice ID	CODE + DEVOPS Amazon CodeGuru Amazon CodeWhisperer Amazon DevOps Guru	INDUSTRIAL Amazon Monitron Amazon Lookout for Equipment Amazon Lookout for Vision	HEALTH Amazon HealthLake Amazon Comprehend Medical Amazon Transcribe Medical
	CORE	TEXT Amazon Translate Ar	nazon Comprehend	SPEECH Amazon Polly Amaz	on Transcribe Ai	ISION mazon Textract Amazon Rekog	nition AWS Panorama

		ſ									
ML SERVICES	SAGEMAKER CANVAS No-code ML for business analysts	MAKER SAGEMAKER O LAB GROUND TRUTH L Label data	Prepare Stor data feat	e Det ures bias	ect Build wit 5 notebool	n Train _{ss} models	Tune parameters	Deploy in production	Explain predictions	Manage & monitor	EDGE MANAGER Manage edge devices
ML FRAMEWO	ORKS PyTorch,	Apache MXNet, TensorFlow	Amazor	1 EC2	CPUs	GPUs	AWS Inferent	ia Tr	AWS	Habana Gaudi	FPGA

Generative Al on AWS

Generative AI is top of mind for most all of our customers

Key drivers: Model size | Transformer technology | Ease of access **Expectations:** Massive productivity gains | Innovations @ scale

Generative AI is the fastest growing trend in AI

Stable Diffusion accumulated 40k stars on GitHub in its first 90 days

ChatGPT reached the 1 million users mark in just 5 days ...

Chart: Financial Review • Source: Genevieve Roch-Decter, CFA

... and surged to 57 million users in its first month after launch.

What is Generative Artificial Intelligence (GenAI)?

- <u>Creates</u> new content and ideas, including conversations, stories, images, videos, and music
- Powered by large models that are pretrained on vast corpuses of data and commonly referred to as <u>foundation models</u> (FMs)

Where does Generative AI fit?

Artificial intelligence (AI)

Any technique that allows computers to mimic human intelligence using logic, if-then statements, and machine learning

Machine learning (ML)

A subset of AI that uses machines to search for patterns in data to build logic models automatically

Deep learning (DL)

A subset of ML composed of deeply multi-layered neural networks that perform tasks like speech and image recognition

Common Use cases

Generative AI public sector application examples

Constituent Communications

Citizen engagement and feedback, transparency

Public Health

Personalized care, population health assessments

Public Safety

Public safety and crime prevention, Emergency response and disaster management

Transportation

Trafic optimization, autonomous vehicle control, personalized transportation experiences

Finance

Budget Optimization, fraud detection, risk assessment and mitigation

Constituent Services

Urban planning, Personalized urban services

Energy and utilities

Energy management, Waste management, Smart grid optimization

Research and Engagement

Environmental monitoring

Instead of sending your data to the model, bring the model to your data.

Amazon generative AI portfolio

Choice of many Foundation Models

Visual authoring in QuickSight

Use everyday language to generate and fine-tune visuals in seconds

aws

How the NFL uses Generative AI to get instant answers

🗾 Quicl	kSight	a questio	n about you	our data						:	* *			mike.band@nfl.com 🗸						
	ා Redo ්ට Res	et │☆ (D	B2) Passing	eason		🖨 Export						xport 🖯	rt 🖹 Data 🗎 Save as 🗠			🕻 Share [] View 🗘 Ale		🗘 Alerts		
Summary	Tendencies	QB-WR Due	os Team	imate On/C	off															
Controls Pa	asser Name All	Min Seas	on 2016	Max Seas	on 2021	Seas	son Type R	EG We	ek All	Quarter All	т	eam All	Oppone	nt All	Down & Di	stance All	Field	Position	All	icore Diffe∨
Passing - Summary																				
Passer Name	T	T Comp	Att	Yards	TD	INT	Rating	Comp %	xComp %	CPOE	Y/A	AY/A	Total EPA	EPA/DB	DB	QBP	QBP %	Sack	Sack %	Blitz %
Russell Wilson	n 3	48 165	5 405	5,744	60	17	110.2	40.7%	30.7%	10.1%	14.2	30.5	262.3	0.65	405	124	30.6%	0	0.0%	36.5%
Matthew Staff	ford 3.	37 122	2 318	4,649	35	13	105.8	38.4%	32.5%	5.8%	14.6	30.8	216.3	0.68	318	103	32.4%	0	0.0%	24.5%
Kirk Cousins	3.	17 135	336	4,713	49	12	112.4	40.2%	33.4%	6.7%	14.0	29.3	215.5	0.64	336	119	35.4%	0	0.0%	29.5%
Patrick Mahor	mes 3.	77 107	273	3,750	43	12	108.1	39.2%	35.7%	3.5%	13.7	30.5	198.4	0.73	273	103	37.7%	0	0.0%	19.4%
Matt Ryan	3.	27 134	336	4,646	33	13	104.0	39.9%	35.7%	4.2%	13.8	29.4	178.1	0.53	336	124	36.9%	0	0.0%	32.7%
Aaron Rodger	·s 3.	54 125	390	4,546	42	10	102.6	32.1%	32.8%	-0.8%	11.7	30.1	174.2	0.45	390	86	22.1%	0	0.0%	26.4%
Derek Carr	3.	25 108	3 288	3,980	33	15	101.9	37.5%	32.7%	4.8%	13.8	29.7	169.9	0.59	288	81	28.1%	0	0.0%	30.9%
Tom Brady	3.	34 127	357	4,331	36	14	99.6	35.6%	34.3%	1.3%	12.1	29.8	154.6	0.43	357	133	37.3%	0	0.0%	23.2%
Dak Prescott	3.	39 98	3 265	3,415	32	11	107.3	37.0%	32.1%	4.8%	12.9	29.3	152.6	0.58	265	95	35.8%	0	0.0%	34.0%
Drew Brees	3.	38 00	3 203	3,009	25	8	113.5	43.3%	35.8%	7.5%	14.8	27.4	143.1	0.71	203	49	24.1%	0	0.0%	25.1%
Kyler Murray	3	41 67	152	2,429	19	6	114.0	44.1%	32.8%	11.2%	16.0	29.0	124.0	0.82	152	27	17.8%	0	0.0%	25.7%
Deshaun Wats	son 3.	30 90	217	3,132	29	18	93.8	41.5%	34.5%	7.0%	14.4	30.3	120.9	0.56	217	85	39.2%	0	0.0%	25.3%
Ben Roethlisb	erger 3.	03 105	356	3,801	44	15	93.6	29.5%	31.2%	-1.7%	10.7	29.9	109.0	0.31	356	107	30.1%	0	0.0%	27.0%
Jameis Winsto	on 3.	33 85	280	2,924	34	18	83.7	30.4%	30.6%	-0.2%	10.4	30.9	103.2	0.37	280	96	34.3%	0	0.0%	29.3%
Baker Mayfield	d 3.	54 87	205	2,774	24	12	104.2	42.4%	34.4%	8.1%	13.5	28.7	97.3	0.47	205	51	24.9%	0	0.0%	32.2%
Philip Rivers	3.	10 97	292	3,566	32	31	77.6	33.2%	33.2%	-0.0%	12.2	30.4	87.2	0.30	292	102	34.9%	0	0.0%	23.6%
Alex Smith	3.	11 54	143	2,104	15	4	108.9	37.8%	33.7%	4.1%	14.7	29.3	85.4	0.60	143	50	35.0%	0	0.0%	20.3%
Andrew Luck	3.	24 62	135	1,988	17	8	107.3	45.9%	35.1%	10.8%	14.7	27.2	83.5	0.62	135	58	43.0%	0	0.0%	32.6%
Carson Wentz	3.	45 96	315	3,416	31	22	76.4	30.5%	30.6%	-0.1%	10.8	31.0	79.8	0.25	315	117	37.1%	0	0.0%	
Jared Goff	3.	27 78	3 237	2,736	15	9	82.9	32.9%	37.2%	-4.3%	11.5	28.6	76.7	0.32	237	76	32.1%	0	0.0%	# 🎽 >
	3.	30 3,654	10,893	127,985	1,095	627	88.5	33.5%	32.5%	1.0%	11.7	29.6	3,587.6	0.33	10,893	3,667	33.7%	0	0.0%	

How to address Generative AI in Public Sector

- How can we support you in ensuring accuracy and authority of model outputs?
- How can we use "guardrails" to minimize inappropriate content?
- How can we maximize the public investment and minimize cost?
- What are your latency requirements for specific use cases?
- What are the potential regulatory, data privacy, & security considerations that may dictate model architecture.
- How can we ensure proprietary, copyrighted and IP concerns are addressed?

Please complete the session survey by scanning the QR code

Track: Artificial Intelligence and Machine Learning **Session:** Build AI and ML powered applications without machine learning expertise

Thank you!

Aditya Challa

aditchal@amazon.com linkedin.com/in/thinkadi