

Democratizing your organization's data analytics experience

Randy Staton Solutions Architect

Agenda

Cloud strategies and data gravity

Modern Data Strategy – People, Process, Technology

```
Democratizing analytics
```

Ease of use

Price performance

Cloud strategies

Data gravity

Continued Analytics Cloud Growth

The Big Data and Analytics software and cloud services has reached \$90.4B spend in 2021, with 44% deployed in the cloud and the remaining 56% on-premises. -IDC

Organizations will move more than 70% of their advanced analytics (enriched with AI/ML) to the cloud by 2024.

-Gartner

Modern Data Strategy

People, Process, Technology

Challenges we are hearing from customers

BUSINESS CHALLENGES: Struggle to answer important Qs timely, limited transparency and auditability erodes trust, limited analytics capacity and capabilities to data share

> **DATA CHALLENGES:** No defined governance models, poor data quality, no metadata for audit/compliance/provenance, no data cataloguing

> **OPERATIONAL CHALLENGES:** Manual/ad hoc processes consume resources, inconsistent data manipulation, no 2-way pipelines, variation in data extraction and identity resolution, PII and PHI protection untraceable and vulnerable

FUNCTIONAL CHALLENGES: Roles and responsibilities not codified, not scalable

What is a Data-Driven Organization?

- Data is valued as a strategic asset not a byproduct of business processes
- Data is FAIR (Findable, Accessible, Interoperable, and Reusable)
- Stakeholders throughout the organization are empowered to make actionable decisions

An agile plan of aligned actions spanning mindset, people, process, and technology that accelerates creating value using data in direct support of strategic objectives

Best practices to combat fears

Reasonable Fear	Best Practice	Benefit	
Vendor lock-in	Microservices	Agility & extensible	
Cool new technology	Component Architect.	Safe to change	
Dependent monolith	Decoupling	Operational efficiency	
Policy change	Loose Configuration	Flexibility & queuing	
Staff size	Event Driven	Cost management	
Expanded adoption	Automation	Machine learning & automation	
Replicability	Containers	Standard practices	
Traceability	Infrastructure as Code	Logging & auditing	
aws © 2024. Amazon Web Services. Inc. or its affiliates. All rights res	Metadata		

Best practices for governance

Reasonable Fear	Best Practice	Benefit
Master Data Mgmt	Data Documentation	 Standardization → Normalization
		Hierarchy for resolution & truth
	Attribute Assignment	Security automation
		Ease of update
Security	Data Protection	 Multiple layers of encryption (at rest, in movement)
		 ML logging – flag anomalies, PII/PHI, avoid error
	Resilience	No single dependencies
		 Hardening, replicated data stores
		 Automated scaling built in elasticity

Best practices for governance

Reasonable Fear	Best Practice	Benefit
Master Data Mgmt	Data Documentation	 Standardization → Normalization
		Hierarchy for resolution & truth
	Attribute Assignment	Security automation
		Ease of update
Security	Data Protection	 Multiple layers of encryption (at rest, in movement)
		 ML logging – flag anomalies, PII/PHI, avoid error
	Resilience	No single dependencies
		 Hardening, replicated data stores
		 Automated scaling built in elasticity

What is a Data Lake? (aka layered & flexible storage)

A data lake is a centralized repository that allows you to store all your structured and unstructured data at any scale

You can store your data as-is, without having to first structure the data, and then easily run different types of analytics or transformations

AWS approach to data modernization

Data governance is the combination of people, processes, and technology that organizations use to ensure the quality and security of their data throughout its lifecycle

THINK BIG, START SMALL, SCALE FAST

- 1. Architect data governance to support the wider data strategy
- 2. Implement incrementally based on business initiatives and use cases that drive the data strategy
- 3. Further evolve data governance capabilities over time

14

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Modern Data Capabilities on AWS

- Customers are increasingly moving to data lake • architectures
- Amazon Redshift allows you to extend your • data warehouse, to your data lake - a Modern Data Architecture
- Flexibility to store highly structured, frequently • accessed data in Redshift, keep in-frequently used data in S3
- Query seamlessly across both to provide unique insights
- Amazon Redshift is the only data warehouse that extends your queries to your Amazon S3 data lake without moving data

Redshift enables you to have a modern data architecture

Modern Data Layers

THE STEPS TO ESTABLISH A MODERN DATA ARCHITECTURE WITH AWS LAKE FORMATION

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Democratizing analytics

Make analytics available, accessible and affordable

AWS analytics mind-map

Data Scientist

- Machine Learning Amazon SageMaker Amazon Redshift ML
- Notebooks -O- Amazon EMR Studio
- Collaboration -O- Amazon SageMaker Studio
- Data Quality –O– AWS Glue DataBrew
- Data Catalog –O– AWS Glue Data Catalog

Democratizing analytics

Make analytics available, accessible and affordable

AWS differentiators

Ease of use

Ease of use

Low barrier to entry

Reduced operational burden

Low code / No code experience

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Ease of use by AWS

Low barrier to entry

Intuitive Start quick / Fail fast Open to a wider audience

Ease of use by AWS

Intuitive Start quick / Fail fast Open to a wider audience Automation Monitoring Operations

Ease of use by AWS

Intuitive Start quick / Fail fast Open to a wider audience Reduced operational burden

> Automation Monitoring Operations

Low code / No code experience

Increased business agility Rapid development / higher productivity

Reduced OpEx

Price performance

Price performance

Performance pricing

Do more with less

Best fit

Price performance by AWS

Performance pricing

Consumption based pricing models

Continuous performance improvements

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Price performance by AWS

Performance pricing Do wit

Consumption based pricing models

Continuous performance improvements

Iterative feature development

3P and native integration support

Price performance by AWS

Performance pricing

Consumption based pricing models

Continuous performance improvements

Iterative feature development

3P and native integration support

Deployment choices

Amazon EMR

BIG DATA ANALYTICS USING OPEN-SOURCE FRAMEWORKS: APACHE SPARK, PRESTO, TRINO, HIVE, HBASE, HUDI AND FLINK

Differentiated performance for Runtimes

Performance optimized runtime for popular frameworks like Spark, Hive, Presto, and Flink with 100% open source API compatibility

Self service data science

Data Science IDE with EMR Studio and Deep integration with Sagemaker Studio provides ability to use open source UX and frameworks to build, visualize and debug applications

Latest open source features

New open source features available within 30 days of release in open source

Run workloads on EC2, EKS or on-premises

EMR provides flexibility to run big data workloads on EC2, EKS, and on-premises with Outpost

aws

Best price performance for big data analytics

Reduce cost using EC2 Spot, EMR Managed Scaling and per-second billing

S3 Data Lake Integration

Fine grained access controls with AWS Lake Formation and Apache Ranger, and Integrations with Apache HUDI and Apache Iceberg to enable S3 data lake use cases

Amazon EMR

4.2x 11-16% 100%

Faster than standard Apache Spark 3.0 in TPC-DS 3 TB benchmark

Faster than standard OSS Trino 388 in TPC-DS 3TB benchmarks

Performance improvement with Graviton2 at 20%+ reduced cost

Open-source API compliant

Feature	
Multi-AZ Availability	
OSS frameworks	
Ability to choose OSS version	
Automatic resource scaling	
Ability to choose instance type	
Ability to use EC2 Spot	
Pricing	
Ability to allocate costs	

Feature	Amazon EMR on EC2	
Multi-AZ Availability	No (clusters run in a single AZ)	
OSS frameworks	Spark, Hive, Presto, Trino, Flink	
Ability to choose OSS version	Yes	
Automatic resource scaling	Yes	
Ability to choose instance type	Yes	
Ability to use EC2 Spot	Yes	
Pricing	By instance type used	
Ability to allocate costs	Per cluster	

Feature	Amazon EMR on EC2	Amazon EMR on EKS	
Multi-AZ Availability	No (clusters run in a single AZ)	Yes (with multi-AZ EKS clusters)	
OSS frameworks	Spark, Hive, Presto, Trino, Flink	Spark	
Ability to choose OSS version	Yes	Yes	
Automatic resource scaling	Yes	Yes	
Ability to choose instance type	Yes	Optional (use EC2 instances or AWS Fargate)	
Ability to use EC2 Spot	Yes	Yes	
Pricing	By instance type used	By vCPU and memory used	
Ability to allocate costs	Per cluster	Per application	

Feature	Amazon EMR on EC2	Amazon EMR on EKS	Amazon EMR Serverless
Multi-AZ Availability	No (clusters run in a single AZ)	Yes (with multi-AZ EKS clusters)	Yes (automated job redirection)
OSS frameworks	Spark, Hive, Presto, Trino, Flink	Spark	Spark, Hive
Ability to choose OSS version	Yes	Yes	Yes
Automatic resource scaling	Yes	Yes	Yes
Ability to choose instance type	Yes	Optional (use EC2 instances or AWS Fargate)	No
Ability to use EC2 Spot	Yes	Yes	No
Pricing	By instance type used	By vCPU and memory used	By vCPU and memory used
Ability to allocate costs	Per cluster	Per application	Per application or per job

Amazon Athena

	\$		
S E R V E R L E S S	PAY PER QUERY	OPEN AND FLEXIBLE	EASY TO USE
ZERO setup cost Serverless: zero	Pay only for queries run \$5/TB	ANSI SQL JDBC/ODBC drivers	Point to S3 and start querying
infrastructure, zero administration	Save 30%–90% on per-query costs through compression	Multiple formats, compression types, and complex joins and data types	DDL operations Query concurrency Integrated data connectors

Serverless TCO

Serverless TCO

Source: Deloitte

Serverless data analytics on AWS

AWS has the **most serverless options** for data analytics in the cloud

AWS differentiators

Request for Survey

Track: Data and Analysis Track

Topic: Democratizing your organization's data analytics experience