dWS

AWS State, Local, and
Education Learning
Days

Building Serverless Architectures

Sudheer Manubolu

Solutions Architect
AWS

Web Services, Inc. or its affiliates. All rights reserved

Agenda

Where we have come from - servers

Where to start with Serverless

Sample Serverless Architecture

City and County of Denver — Application Modernization Journey

aWws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Servers

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. i

How do we use servers?

« State management

- Monolithic container for functionality
« One version, one server

- Server is an atomic unit of thinking

« The challenges of this model

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

In the good old days there was one way (EC2)

D

/"m
i i 0
| Amazon | MySQL DB
EC2 Primary
N/ 5
-‘—f\-.-
Users: Applidation < ‘
Load
Balahcer Auto Scaling . —
$ TR MySQL DB
| I Replica
EC2 .
l Public Subnet l
\ virtual private cloud
\ e
AWS cloud
.
aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

p

Today there are more choices!

AWS App Runner

Build and run production web applications at scale

Batch

Fully managed batch procs g at any scale

EC2

Virtual Servers in the Cloud

EC2 Image Builder

A managed service to automate build, customize and deploy OS images

Elastic Beanstalk
Run and Manage Web Apps

Lambda

Run Code without Thinking about Servers

Lightsail &2

Launch and Manage Virtual Private Servers

AWS Outposts

Run AWS Services On Premises

Serverless Application Repository

Assemble, deploy, and share serverless applications within teams or publicly

Elastic Container Registry

Fully-managed Docker container registry : Share and deploy container software,
publicly or privately

Elastic Container Service

Highly secure, reliable, and scalable way to run containers

Elastic Kubernetes Service

The most trusted way to start, run, and scale Kubernetes

Red Hat OpenShift Service on AWS

Fully managed Red Hat OpenShift service on AWS

Customers love that they can pick the right tool for the job but that comes with some decision fatigue
aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example: WordPress hosting on Amazon Web Services

Region
& R

-
I
: Availability Zone !
| - -
! ﬂ Public subnet Private subnet (App) Private subnet (Data) :
1 I I
| Gar::vIa ! WordPress ! ElastiCache for Read EFS Mount :
: c y i Instance | Memcached Replica Target !
& 1 I [uln] Amazon
: @“ — = k- 4! f'@"] |é 5))—
(e 1 A I
Amazon 1o 1 . | 1 1 ~ I
Route 53 P 1 Bastion : | T |
I I 11! i:t 1 I . T 1
1 1 1! 1 1 1
n I | | [1 I 1 I a
I 1 1| 1 I 1 1
B "1""""'T'f""""|'""":""""':' """""""""""""""""""
N 1 4 < | L |
B —o-% =
! ! T ! 0
. . 1 . 1 - . 1
Amazen Intetnet : Application)' 1 Auto Scaling | :Auto Scaling ! Amazon EFS
atewa - _:l-ga_d_B_aLaDEe_r: _; ________ .:. ______ e S M
CloudFront gatewgy - AT] , ,
: Public subnet, | . rivate subnet; (App) Private subnet (DataL :
> . . . L L :
1 1
1 I I
> % Vo | v __ | ! ElastiCache for \I/ \Z EFS Mount !
. I i Memcached Master Target i
S3 bucket for 1 B | L > E Amazon !
WordPress ! i , @ A"“’"@ —@ ¢ :
static assets %:—WordPress : !
I
I
I
I

: i Instance | B a
a 1 NAT Gateway @~~~ "~~~ ~°°

1

1

aws https://docs.aws.amazon.com/whitepapers/latest/best-practices-wordpress/reference-architecture.html
N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://docs.aws.amazon.com/whitepapers/latest/best-practices-wordpress/reference-architecture.html

Where to start with
serverless

2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

General approach to thinking serverlessly

FER
& r/@ o

Features first Focus on events Statelessness

Avoid Events are The key to
monolithic triggers that scaling
thinking cause action effectively

dWs

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data flow

Make data
decisions
early on

Use the services

Don't reinvent
the wheel

What are serverless services?

Amazon

Amazon Simple
EventBridge Notification Service

Amazon API Amazon AWS
Gateway DynamoDB Lambda

f
Amazon AWS
Kinesis loT Core

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Amazon Simple
Queue Service

= 2

AWS Step
Functions

Amazon S3

Amazon Elastic
Transcoder

Integrating with other AWS services

= =h
. miln_|
Amazon Amazon Amazon Amazon
Rekognition Comprehend Textract Transcribe

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

R

Amazon
Translate

How AWS Lambda fits in

Attributes

aWws

N

Runs on demand
Supports many runtimes
Responds to events
Stateless

Automatically scales

Best practices

Avoid lifting-and-shifting

1 Lambda function per purpose
Keep functions small

Choose the right runtime

Use functions for business logic
and plumbing between services

Include security

Hood serverless practices

- Infrastructure is disposable

- Asynchronous versus synchronous processing
« You can mix and match runtime

« Security still top priority

« Automation
AWS Serverless Application Model (AWS SAM)

Serverless framework

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Introducing AWS SAM

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

AWS Serverless Application Model (AWS SAM)

« AWS CloudFormation extension
optimized for serverless

« Serverless resource types:
Functions, APIs, tables

« Supports anything
CloudFormation supports

- Open specification (Apache 2.0)

To learn more, visit:
https://aws.amazon.com/serverless/sam/

aws

N 2) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

https://aws.amazon.com/serverless/sam/

Example AWS SAM template

dWs

p

© 2024, Amazon Web Services, Inc. or its affiliates. All rig

'2010-09-09'

: AWS::Serverless-2016-10-31

: String

'fr es it

::S3: :Bucket

: :Serverless: :Function

: translatorFunction/
: app.handler
: nodejsl4.x

!Ref TargetLanguage

IRef TranslationBucketName

'Ref TranslationBucket
: s3:0bjectCreated:*

Transforms YAML into infrastructure

'2010-09-09'
: AWS::Serverless-2016-10-31

: String
'fr es it'

' AWS Cloud
::53: :Bucket

::Serverless: :Function : @
: translatorFunction/

: app.handler Amazon S3

: nodejsl4.x bucket AWS Lambda Amazon DynamoDB AWS Lambda

'Ref TargetlLanguage

'Ref TranslationBucketName

'Ref TranslationBucket
: s3:0bjectCreated:*

: suffix
'Lotxt!

Whiteboarding

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. Form upload

Create a serverless application to support a student feedback form
submitted from a webpage

Incoming Allow user to Email any Only allow
responses upload image negative signed-in
must be with a comments students to
translated response immediately post feedback
into English

dWs

N >) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

2. Lab room reservations

Create a serverless application to allow students to reserve a lab room
by SMS text message

Add a display Speak the Send a daily Alert a legacy
showing name of a reservation application
upcoming student when email report when
reservations ready reservations
in real time are made

dWs

N >) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

3. Web application

Create a serverless web application to support a national outreach
application

Ensure fast Allow users Support Let users ‘like’
performance to create uploading videos and
for visitors accounts and serving receive
in multiple (including user videos updates
Regions social login)

dWs

N >) © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

City and County of Denver

Application Modernization

Read Bierbach - Lifecycle
Management Program Manager

”,
E;‘ DENVER CONNECT WITH US 311 | DENVERGOV.ORG | DENVER 8 TV

Problem

 Aging application codebase and infrastructure that needed updating

 Expanding application portfolio and limited resources to develop and
maintain that portfolio

 Refactor and modernize a portfolio of 42 .NET applications serving Denver
citizens

 Reduce our on-prem footprint and cost

* No clear breakdown of cost and no ability to turn off resources when not in
use

\/7
E © DENVER CONNECT WITH US 311 | DENVERGOV.ORG | DENVER 8 TV

"7 THE MILE HIGH CITY

Why We Chose AWS Containerization

* Simplicity of Management
e Removes the orchestration of containers

* Expediency of application migration

* Easier and more flexible for .NET apps
 Reduced our need for additional refactoring

* Moving to RDS reduced our reliance on internal DBA resources

\/7
E © DENVER CONNECT WITH US 311 | DENVERGOV.ORG | DENVER 8 TV

"7 THE MILE HIGH CITY

Successes

e Completed refactoring and migration of 10 applications to AWS
 Completed these migration in 10 months from inception to
production deployment

Reduced our time to deployment on refactored applications

Reduced our application run costs by 18% from on-prem hosting

Clear breakdown of costs and the ability to turn off environments.
* We are already seeing cost savings of S7500 a month

\/7
E © DENVER CONNECT WITH US 311 | DENVERGOV.ORG | DENVER 8 TV

"7 THE MILE HIGH CITY

Wrap up

aws

N 2 © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

dWS

Thank you!

Sudheer Manubolu
smanubol@amazon.com

IEI:'I:'-"-:?..

1. Application modernization and security Track
2. Serverless architectures - Why is everyone
moving to serverless?

Please complete the session survey by
scanning the QR code

1. Application modernization and security Track
2. Serverless architectures - Why is everyone moving to serverless?

CAA)

