
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sudheer Manubolu

Solutions Architect

AWS

AWS State, Local, and
Education Learning
Days
Building Serverless Architectures

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

• Where we have come from – servers

• Where to start with Serverless

• Sample Serverless Architecture

• City and County of Denver – Application Modernization Journey

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Servers

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How do we use servers?

• State management

• Monolithic container for functionality

• One version, one server

• Server is an atomic unit of thinking

• The challenges of this model

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

In the good old days there was one way (EC2)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Today there are more choices!

Customers love that they can pick the right tool for the job but that comes with some decision fatigue

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

https://docs.aws.amazon.com/whitepapers/latest/best-practices-wordpress/reference-architecture.html

Example: WordPress hosting on Amazon Web Services

https://docs.aws.amazon.com/whitepapers/latest/best-practices-wordpress/reference-architecture.html

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Where to start with
serverless

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

General approach to thinking serverlessly

Features first Statelessness Use the servicesData flowFocus on events

Avoid

monolithic

thinking

Events are

triggers that

cause action

The key to

scaling

effectively

Make data

decisions

early on

Don’t reinvent

the wheel

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What are serverless services?

Amazon
DynamoDB

Amazon API
Gateway

AWS
Lambda

AWS Step
Functions

Amazon S3

Amazon
EventBridge

Amazon Simple

Notification Service

Amazon Simple

Queue Service

Amazon

Kinesis

AWS

IoT Core

Amazon Elastic

Transcoder

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Integrating with other AWS services

Amazon

Comprehend

Amazon

Rekognition

Amazon

Textract

Amazon

Transcribe

Amazon

Translate

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

How AWS Lambda fits in

Attributes

• Runs on demand

• Supports many runtimes

• Responds to events

• Stateless

• Automatically scales

Best practices

• Avoid lifting-and-shifting

• 1 Lambda function per purpose

• Keep functions small

• Choose the right runtime

• Use functions for business logic
and plumbing between services

• Include security

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Hood serverless practices

• Infrastructure is disposable

• Asynchronous versus synchronous processing

• You can mix and match runtime

• Security still top priority

• Automation

• AWS Serverless Application Model (AWS SAM)

• Serverless framework

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Introducing AWS SAM

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Serverless Application Model (AWS SAM)

• AWS CloudFormation extension
optimized for serverless

• Serverless resource types:
Functions, APIs, tables

• Supports anything
CloudFormation supports

• Open specification (Apache 2.0)

To learn more, visit:

https://aws.amazon.com/serverless/sam/

https://aws.amazon.com/serverless/sam/

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Example AWS SAM template

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Transforms YAML into infrastructure

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Whiteboarding

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

1. Form upload

Create a serverless application to support a student feedback form
submitted from a webpage

Incoming
responses
must be

translated
into English

Allow user to
upload image

with a
response

Email any
negative

comments
immediately

Only allow
signed-in

students to
post feedback

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

2. Lab room reservations

Create a serverless application to allow students to reserve a lab room
by SMS text message

Add a display
showing

upcoming
reservations
in real time

Speak the
name of a

student when
ready

Send a daily
reservation
email report

Alert a legacy
application

when
reservations

are made

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

3. Web application

Create a serverless web application to support a national outreach
application

Ensure fast
performance
for visitors
in multiple

Regions

Allow users
to create
accounts
(including

social login)

Support
uploading

and serving
user videos

Let users ’like’
videos and

receive
updates

City and County of Denver

Application Modernization

Read Bierbach – Lifecycle

Management Program Manager

Problem
• Aging application codebase and infrastructure that needed updating

• Expanding application portfolio and limited resources to develop and
maintain that portfolio

• Refactor and modernize a portfolio of 42 .NET applications serving Denver
citizens

• Reduce our on-prem footprint and cost

• No clear breakdown of cost and no ability to turn off resources when not in
use

Why We Chose AWS Containerization

• Simplicity of Management
• Removes the orchestration of containers

• Expediency of application migration

• Easier and more flexible for .NET apps
• Reduced our need for additional refactoring

• Moving to RDS reduced our reliance on internal DBA resources

Successes

• Completed refactoring and migration of 10 applications to AWS
• Completed these migration in 10 months from inception to

production deployment

• Reduced our time to deployment on refactored applications

• Reduced our application run costs by 18% from on-prem hosting

• Clear breakdown of costs and the ability to turn off environments.
• We are already seeing cost savings of $7500 a month

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Wrap up

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Sudheer Manubolu

smanubol@amazon.com

1. Application modernization and security Track
2. Serverless architectures - Why is everyone

moving to serverless?

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Please complete the session survey by
scanning the QR code

1. Application modernization and security Track
2. Serverless architectures - Why is everyone moving to serverless?

