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Developer’'s perspective

Primer — monolith vs. microservices
Where do we start?

Challenges and learnings

Using containers
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Questions for Audience

1. Do you use microservices today?
- If so, which pattern do you use ?

1. Do you support monolith applications today?
- If so, how long is your deployment time ?

-whats your rollback strategy ?
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Developer's Perspective

- Application redesign patterns

- Data layer

«  Synchronous to Asynchronous
«  Orchestration

« Monitoring

« Containerization
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Basic Concepts and Definitions
Monolith

S Microservices
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Original Monolithic Application - Example

« On-premises
- Tightly coupled application components
- Load balancer

- Relational Database

»

Webserver
App Service
Browser jusmmssmd Lload :
Balancer Visualization
Service

Data Access Service
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Monolithic Applications - Limitations

Hard to Scale Can't Handle Slow Limited options
Component Deployment
Failures Process
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Drivers to Switch to Microservices
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Time to Market

Time to Repair

Enabled Hyperscaling
Technologically Independent
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Where do we start?
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Where Do We Start? - Discover

1. Identify 2. Outline 3. Map to
Components Requirements Amazon Web Services(AWS )Resources
Webserver « State?
° ? : L
App Service ComPUte. gﬁ
« API?
Visuali;ation — « Storage? HTEEAL AWS Lambda

DynamoDB

e Security?
Data Access Service

 Managed? b
. « Estimated scale? Dﬁlfﬂ @

e etc.

Amazon API Amazon S3
Gateway
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Design, Develop, Deploy - a Pilot

Technical requirements
—» ¢ API-driven
* Independent DBs

Webserver

App service

Visualization —* « (Containerized or serverless

Service Organizational requirements

Data Access Service * Dedicated product team
« Small frequent incremental changes

Integration selvices
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Logging

Monitoring
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Recommended Approach

Monolith

https://www.martinfowler.com/bliki/StranglerApplication.html

Strangler Fig Application Pattern:
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https://www.martinfowler.com/bliki/StranglerApplication.html

Challenges and Learnings
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Challenge: Centralized Database

Applications often have a monolithic

Difficult to make schema changes

Technology lock-in

Vertical scaling

D
Single point of failure /m
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Centralized Database — Anti-Pattern

Applications often have a monolithic
data store

Difficult to make schema changes
Technology lock-in
Vertical scaling

Single point of failure
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Decentralized Data Stores

Polyglot Persistence

Each service chooses its data store technology

Amazon ElastiCache

Amazon RDS

Low impact schema changes

Independent scalability

Data is gated through the service API -
e
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Challenge: Transactional Integrity

Polyglot persistence generally translates
into eventual consistency

Asynchronous calls allow non-blocking,
but returns need to be handled properly Customer Service

Deliverylnfo

Customer

Order Service p)

How about transactional integrity?

Paymentinfo

- Event-sourcing — Capture changes as

sequence of events PaymentMethod

* ByCreditCard Payment Service

- Staged commit * ByOnlinePay
* ByAccount PayForOrderID

« Rollback on failure

aws
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Best Practice: Use Correlation IDs

request -correlation id: - correlation id: -
“uuid-123" “uuid-123"

09-02-2015 15:03:24 ui-svc INFO [uuld-123] ...

09-02-2015 15:03:25 catalog-svc INFO [uuid-123]

oooooo

09-02-2015 15:03:206 checkout-svc [uulid-123] ...

09-02-2015 15:03:27 payment-svc INFO [uulid-123]

09-02-2015 15:03:27 shipping-svc INFO [uuld-123]

oooooo

oooooo
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Best Practice: Microservice Owns Rollback

Microservice

- Every microservice should expose its own “rollback”

method | —f) Function 1
- This method could just rollback changes, or trigger |

subsequent actions

—g Rollback
« Could send a notification

- If you implement staged commit, also expose a commit
function g — Commit

(optional)

Amazon DynamoDB
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Best Practice: Event Sourcing Pattern

Customer Service

Order Add Event
Find Event Subscribe Event
PaymentMethod
ByCreditCard
ByOnlinePay Event Store

ByAccount

l OrderCreated

OrderApproved
OrderPaid

123456 Ordered 2020.03.01 232434.94

OrderShipped
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Best Practice: Event Sourcing Pattern on AWS

Amazon API Gateway

AWS Lambda

Amazon DynamoDB
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Event Store

Publish Event

L)

g

Microservice 1

Persistent Event

P%J >

Amazon Kinesis
Data Firehose

Amazon S3

[}ﬁ Read & Filter

Event
!‘

g

Microservice 2
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Amazon Redshift
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Microservice 3



Challenge: Report Errors / Rollback

-  What if functions fail? (business logic failure, not code failure)

- Create a “Transaction Manager” microservice that notifies all
relevant microservices to rollback or take action

- Amazon DynamoDB is the trigger for the clean-up function
(could be Amazon SQS, Amazon Kinesis etc.)

- Use Correlation ID to identify relations

aws
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Error Table
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Streams
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Challenge: Report Errors / Rollback

Rollback
(correlation-id)

Amazon \
Kinesis \

Error Stream \ Rollback

(correlation-id)

Rollback
(correlation-id)

Amazon SQS
Error Queue

Transaction
Manager
Function

Rollback
(correlation-id)

Amazon
aws DynamoDB
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Challenge: Saga Pattern using AWS Step Functions &
AWS Lambda

M Success M Failed Cancelled In Progress

| Start

Using AWS Step Functions as a
“Transaction Manager” to catch
failure situations and perform
rollbacks.

el B
CancelRental :} End |

CancelFlight

CancelHotel

T

Fail

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
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Using containers
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Containers and Microservices

Do one thing, really well

- Any app, any language

Container Container

- Test and deploy same artifact

. Self-contained services

. Isolated execution environment

Container Container

«  Faster startup

«  Scaling and upgrading
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Container Orchestration Platform Options

ECS EKS

Powerful simplicity Open flexibility
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Amazon Elastic Container Service (ECS)

Developed by Amazon

Used within Amazon

- Amazon SageMaker
- AWS Batch

- Recommendation engine

Natively integrates with AWS
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Amazon Elastic Kubernetes Service (EKS)

Open-source Kubernetes
Fully-managed environment
Full compatibility with upstream

Integrates with AWS services
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Choosing a Compute Layer

Consistent utilization

Pack instances as full as
possible

Specialized resource needs
(GPU, Inference)

Maintenance & updates are
customer responsibility

Windows & Linux
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Variable or unpredictable scaling
Batch workloads

L ow overhead — no server
maintenance

Linux only
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Diego Voltz

Sr. Solutions Architect
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diegovf@amazon.com . . ! . A
Session: Application Modernizati
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