
© 2023, Amazon Web Services, Inc. or its affiliates.© 2024, Amazon Web Services, Inc. or its affiliates.

AWS Miami
Learning Days
Application Modernization:
Monolith to Microservices with Containers

Diego Voltz
Sr. Solutions Architect
Amazon Web Services

© 2023, Amazon Web Services, Inc. or its affiliates.

Agenda

Developer’s perspective

Primer – monolith vs. microservices

Where do we start?

Challenges and learnings

Using containers

© 2023, Amazon Web Services, Inc. or its affiliates.

Questions for Audience

1. Do you use microservices today?

 - If so, which pattern do you use ?

1. Do you support monolith applications today?

 - If so, how long is your deployment time ?

 -whats your rollback strategy ?

3

© 2023, Amazon Web Services, Inc. or its affiliates.

Developer’s Perspective

• Application redesign patterns

• Data layer

• Synchronous to Asynchronous

• Orchestration

• Monitoring

• Containerization

Source: Amazon Freeway

© 2023, Amazon Web Services, Inc. or its affiliates.

Basic Concepts and Definitions

Completely
independent

Monolith MicroservicesMiniservices

?

© 2023, Amazon Web Services, Inc. or its affiliates.

Original Monolithic Application - Example

• On-premises

• Tightly coupled application components

• Load balancer

• Relational Database

Load
BalancerBrowser Database

Webserver

Data Access Service

App Service

Visualization
Service

© 2023, Amazon Web Services, Inc. or its affiliates.

Monolithic Applications - Limitations

Hard to Scale Can’t Handle
Component

Failures

Slow
Deployment

Process

Limited options

© 2023, Amazon Web Services, Inc. or its affiliates.

Drivers to Switch to Microservices

- Time to Market

- Time to Repair

- Enabled Hyperscaling

- Technologically Independent

© 2023, Amazon Web Services, Inc. or its affiliates.© 2023, Amazon Web Services, Inc. or its affiliates.

Where do we start?

© 2023, Amazon Web Services, Inc. or its affiliates.

1. Identify
Components

Visualization
Service

Webserver

Data Access Service

App Service

Database

2. Outline
Requirements

3. Map to
Amazon Web Services(AWS)Resources

• State?
• Compute?
• API?
• Storage?
• Security?
• Managed?
• Estimated scale?
• etc.

Where Do We Start? - Discover

Amazon
DynamoDB

AWS Lambda

Amazon API
Gateway

Amazon S3

© 2023, Amazon Web Services, Inc. or its affiliates.

Technical requirements
• API-driven
• Independent DBs
• Containerized or serverless

Organizational requirements
• Dedicated product team
• Small frequent incremental changes

Design, Develop, Deploy - a Pilot

Webserver

Data Access Service

App service

Visualization
Service

In
te

gr
at

io
n

se
rv

ic
es

In
fo

Se
c

se
rv

ic
es

APIs

APIs

APIs

APIs

Hooks

Hooks

Logging

Monitoring

© 2023, Amazon Web Services, Inc. or its affiliates.

Recommended Approach
Monolith

Strangler Fig Application Pattern:
https://www.martinfowler.com/bliki/StranglerApplication.html

https://www.martinfowler.com/bliki/StranglerApplication.html

© 2023, Amazon Web Services, Inc. or its affiliates.© 2023, Amazon Web Services, Inc. or its affiliates.

Challenges and Learnings

© 2023, Amazon Web Services, Inc. or its affiliates.

Challenge: Centralized Database

Applications often have a monolithic
data store

Difficult to make schema changes

Technology lock-in

Vertical scaling

Single point of failure

user-svc account-svccart-svc

DB

© 2023, Amazon Web Services, Inc. or its affiliates.

Centralized Database – Anti-Pattern

Applications often have a monolithic
data store

Difficult to make schema changes

Technology lock-in

Vertical scaling

Single point of failure

user-svc account-svccart-svc

DB

© 2023, Amazon Web Services, Inc. or its affiliates.

Decentralized Data Stores

• Polyglot Persistence

• Each service chooses its data store technology

• Low impact schema changes

• Independent scalability

• Data is gated through the service API account-svccart-svc

Amazon DynamoDB Amazon RDS

user-svc

Amazon ElastiCache Amazon RDS

© 2023, Amazon Web Services, Inc. or its affiliates.

Challenge: Transactional Integrity

• Polyglot persistence generally translates
into eventual consistency

• Asynchronous calls allow non-blocking,
but returns need to be handled properly

• How about transactional integrity?

• Event-sourcing – Capture changes as
sequence of events

• Staged commit

• Rollback on failure

Order Service

Customer Service

Payment Service

Order

PaymentMethod
• ByCreditCard
• ByOnlinePay
• ByAccount

Customer DeliveryInfo

PaymentInfo

PayForOrderID

?

?

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Use Correlation IDs

09-02-2015 15:03:24 ui-svc INFO [uuid-123] ……

09-02-2015 15:03:25 catalog-svc INFO [uuid-123] ……

09-02-2015 15:03:26 checkout-svc ERROR [uuid-123] ……

09-02-2015 15:03:27 payment-svc INFO [uuid-123] ……

09-02-2015 15:03:27 shipping-svc INFO [uuid-123] ……

ui-svc catalog-
svc

checkout-
svc

shipping-
svc

payment-
svc

request correlation id:
“uuid-123”

correlation id:
“uuid-123”

correlation id:

“uuid-123”

correlation id: “uuid-123”

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Microservice Owns Rollback

• Every microservice should expose its own “rollback”
method

• This method could just rollback changes, or trigger
subsequent actions

• Could send a notification

• If you implement staged commit, also expose a commit
function

Microservice

Function 1

Rollback

Commit
(optional)

Amazon DynamoDB

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Event Sourcing Pattern

Order Service

Order

PaymentMethod
• ByCreditCard
• ByOnlinePay
• ByAccount

Customer ServiceOrder Service

Event Store
Order123456

OrderCreated

OrderApproved

OrderPaid

OrderShipped

……..

ID Status Date Total …

…

123456 Ordered 2020.03.01 232434.94 …

Add Event
Find Event Subscribe Event

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Event Sourcing Pattern on AWS

© 2023, Amazon Web Services, Inc. or its affiliates.

Challenge: Report Errors / Rollback

• What if functions fail? (business logic failure, not code failure)

• Create a “Transaction Manager” microservice that notifies all
relevant microservices to rollback or take action

• Amazon DynamoDB is the trigger for the clean-up function
(could be Amazon SQS, Amazon Kinesis etc.)

• Use Correlation ID to identify relations

cust-svc

Transaction
Manager
Function

Amazon DynamoDB
Streams

API Call

Error Table

© 2023, Amazon Web Services, Inc. or its affiliates.

Challenge: Report Errors / Rollback

ERROR

Amazon
DynamoDB
Error Table

Transaction
Manager
Function

Amazon
Kinesis

Error Stream

Amazon SQS
Error Queue

Rollback
(correlation-id)

Rollback
(correlation-id)

Rollback
(correlation-id)

Rollback
(correlation-id)

© 2023, Amazon Web Services, Inc. or its affiliates.

Challenge: Saga Pattern using AWS Step Functions &
AWS Lambda

Using AWS Step Functions as a
“Transaction Manager” to catch
failure situations and perform
rollbacks.

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

© 2023, Amazon Web Services, Inc. or its affiliates.© 2023, Amazon Web Services, Inc. or its affiliates.

Using containers

© 2023, Amazon Web Services, Inc. or its affiliates.

Containers and Microservices

• Do one thing, really well

• Any app, any language

• Test and deploy same artifact

• Self-contained services

• Isolated execution environment

• Faster startup

• Scaling and upgrading

Container Container

Container Container

© 2023, Amazon Web Services, Inc. or its affiliates.

Container Orchestration Platform Options

© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon Elastic Container Service (ECS)

Developed by Amazon

Used within Amazon

- Amazon SageMaker

- AWS Batch

- Recommendation engine

Natively integrates with AWS

© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon Elastic Kubernetes Service (EKS)

Open-source Kubernetes

Fully-managed environment

Full compatibility with upstream

Integrates with AWS services

© 2023, Amazon Web Services, Inc. or its affiliates.

Choosing a Compute Layer

• Consistent utilization
• Pack instances as full as

possible
• Specialized resource needs

(GPU, Inference)
• Maintenance & updates are

customer responsibility
• Windows & Linux

• Variable or unpredictable scaling
• Batch workloads
• Low overhead – no server

maintenance
• Linux only

EC2 Fargate

© 2023, Amazon Web Services, Inc. or its affiliates.

Thank you!

© 2023, Amazon Web Services, Inc. or its affiliates.

Diego Voltz
Sr. Solutions Architect
Amazon Web Services
diegovf@amazon.com

Please complete the session survey by scanning the QR code

Track: Application Modernization and Security
Session: Application Modernization: Monolith
to Microservices with Containers

