dWs
~—

AWS Miami
Learning Days

Application Modernization:
Monolith to Microservices with Containe

Diego Voltz

Sr. Solutions Architect
Amazon Web Services

Agenda

Developer’'s perspective

Primer — monolith vs. microservices
Where do we start?

Challenges and learnings

Using containers

aws
N

© 2023, Amazon Web Services, Inc. or its affiliates.

Questions for Audience

1. Do you use microservices today?
- If so, which pattern do you use ?

1. Do you support monolith applications today?
- If so, how long is your deployment time ?

-whats your rollback strategy ?

aws
>

Developer's Perspective

- Application redesign patterns

- Data layer

« Synchronous to Asynchronous
« Orchestration

« Monitoring

« Containerization

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Basic Concepts and Definitions
Monolith

S Microservices

=

n

,f ____________ ‘\\
" \ Completely
i P, i independent
|
: . 1 /’\
| : ‘\.’.
|
I ' I I I
=
I o. 1 o 1 2o
O > =t~ =t~ =t~
- I) I I <o~} ~o~] ~o—}
|
I .4||§. i oo <I>e oI>e
I \. | 0 .\6’.
: l <o I
i ' || <I>e
I ()) : .< >. >
I < e @
, |
I N]|
I @ ® @ ®
1 ~e~ ~e~ | oo
/
\s_ ____________ >’

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Original Monolithic Application - Example

« On-premises
- Tightly coupled application components
- Load balancer

- Relational Database

»

Webserver
App Service
Browser jusmmssmd Lload :
Balancer Visualization
Service

Data Access Service

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Database

Monolithic Applications - Limitations

Hard to Scale Can't Handle Slow Limited options
Component Deployment
Failures Process

aws
~—

Drivers to Switch to Microservices

aws
>

Time to Market

Time to Repair

Enabled Hyperscaling
Technologically Independent

O,
B
<>t
o>Se
pd <3>r
I '
.\.’. /I\
.\".
<a b ./’\ ./’\.
Y I B
o~ e~ ~e—°
o1 Se
o
.\.,.
o1 Se
pd
/I\
.\.’.

Where do we start?

aws
~—

ervices, Inc. or its affiliates.

Where Do We Start? - Discover

1. Identify 2. Outline 3. Map to
Components Requirements Amazon Web Services(AWS)Resources
Webserver « State?
° ? : L
App Service ComPUte. gﬁ
« API?
Visuali;ation — « Storage? HTEEAL AWS Lambda

DynamoDB

e Security?
Data Access Service

 Managed? b
. « Estimated scale? Dﬁlfﬂ @

e etc.

Amazon API Amazon S3
Gateway

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

aws
~—

Design, Develop, Deploy - a Pilot

Technical requirements
—» ¢ API-driven
* Independent DBs

Webserver

App service

Visualization —* « (Containerized or serverless

Service Organizational requirements

Data Access Service * Dedicated product team
« Small frequent incremental changes

Integration selvices

(]
Q
=
>
T
Q
(V]
O
Q
n
(@)
y—
=

Logging

Monitoring

© 2023, Amazon Web Services, Inc. or its affiliates.

Recommended Approach

Monolith

https://www.martinfowler.com/bliki/StranglerApplication.html

Strangler Fig Application Pattern:

aws
~—

https://www.martinfowler.com/bliki/StranglerApplication.html

Challenges and Learnings

aws
~—

Challenge: Centralized Database

Applications often have a monolithic

Difficult to make schema changes

Technology lock-in

Vertical scaling

D
Single point of failure /m

N © 2023, Amazon Web Services, Inc. or its affiliates

Centralized Database — Anti-Pattern

Applications often have a monolithic
data store

Difficult to make schema changes
Technology lock-in
Vertical scaling

Single point of failure

aws
~—

2023, Amazon Web Services, Inc. or

user-svc Junt-svc

its affiliates.

Decentralized Data Stores

Polyglot Persistence

Each service chooses its data store technology

Amazon ElastiCache

Amazon RDS

Low impact schema changes

Independent scalability

Data is gated through the service API -
e

© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon RDS

-
=

Challenge: Transactional Integrity

Polyglot persistence generally translates
into eventual consistency

Asynchronous calls allow non-blocking,
but returns need to be handled properly Customer Service

Deliverylnfo

Customer

Order Service p)

How about transactional integrity?

Paymentinfo

- Event-sourcing — Capture changes as

sequence of events PaymentMethod

* ByCreditCard Payment Service

- Staged commit * ByOnlinePay
* ByAccount PayForOrderID

« Rollback on failure

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Use Correlation IDs

request -correlation id: - correlation id: -
“uuid-123" “uuid-123"

09-02-2015 15:03:24 ui-svc INFO [uuld-123] ...

09-02-2015 15:03:25 catalog-svc INFO [uuid-123]

oooooo

09-02-2015 15:03:206 checkout-svc [uulid-123] ...

09-02-2015 15:03:27 payment-svc INFO [uulid-123]

09-02-2015 15:03:27 shipping-svc INFO [uuld-123]

oooooo

oooooo

aws
~—

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Microservice Owns Rollback

Microservice

- Every microservice should expose its own “rollback”

method | —f) Function 1
- This method could just rollback changes, or trigger |

subsequent actions

—g Rollback
« Could send a notification

- If you implement staged commit, also expose a commit
function g — Commit

(optional)

Amazon DynamoDB

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Event Sourcing Pattern

Customer Service

Order Add Event
Find Event Subscribe Event
PaymentMethod
ByCreditCard
ByOnlinePay Event Store

ByAccount

l OrderCreated

OrderApproved
OrderPaid

123456 Ordered 2020.03.01 232434.94

OrderShipped

aws

N

© 2023, Amazon Web Services, Inc. or its affiliates.

Best Practice: Event Sourcing Pattern on AWS

Amazon API Gateway

AWS Lambda

Amazon DynamoDB

aws
~—

Event Store

Publish Event

L)

g

Microservice 1

Persistent Event

P%J >

Amazon Kinesis
Data Firehose

Amazon S3

[}ﬁ Read & Filter

Event
!‘

g

Microservice 2

-8

Amazon Redshift

i}
N

~
@' Process Event

Microservice 3

Challenge: Report Errors / Rollback

- What if functions fail? (business logic failure, not code failure)

- Create a “Transaction Manager” microservice that notifies all
relevant microservices to rollback or take action

- Amazon DynamoDB is the trigger for the clean-up function
(could be Amazon SQS, Amazon Kinesis etc.)

- Use Correlation ID to identify relations

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

xust—svc

|API Call

4

Error Table

Amazon DynamoDB
Streams

/I\

Transaction
Manager
Function

Challenge: Report Errors / Rollback

Rollback
(correlation-id)

Amazon \
Kinesis \

Error Stream \ Rollback

(correlation-id)

Rollback
(correlation-id)

Amazon SQS
Error Queue

Transaction
Manager
Function

Rollback
(correlation-id)

Amazon
aws DynamoDB

N

Error Table

Challenge: Saga Pattern using AWS Step Functions &
AWS Lambda

M Success M Failed Cancelled In Progress

| Start

Using AWS Step Functions as a
“Transaction Manager” to catch
failure situations and perform
rollbacks.

el B
CancelRental :} End |

CancelFlight

CancelHotel

T

Fail

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

>) © 2023, Amazon Web Services, Inc . or its affiliates.

https://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

Using containers

aws
~—

Containers and Microservices

Do one thing, really well

- Any app, any language

Container Container

- Test and deploy same artifact

. Self-contained services

. Isolated execution environment

Container Container

« Faster startup

« Scaling and upgrading

aws

N 2) © 2023, Amazon Web Services, Inc. or its affiliates.

Container Orchestration Platform Options

ECS EKS

Powerful simplicity Open flexibility

© 2023, Amazon Web Services, Inc. or its affiliates.

Amazon Elastic Container Service (ECS)

Developed by Amazon

Used within Amazon

- Amazon SageMaker
- AWS Batch

- Recommendation engine

Natively integrates with AWS

aws
~—

Amazon Elastic Kubernetes Service (EKS)

Open-source Kubernetes
Fully-managed environment
Full compatibility with upstream

Integrates with AWS services

aws
~—

Choosing a Compute Layer

Consistent utilization

Pack instances as full as
possible

Specialized resource needs
(GPU, Inference)

Maintenance & updates are
customer responsibility

Windows & Linux

aws
~—

. Fargate
-

Variable or unpredictable scaling
Batch workloads

L ow overhead — no server
maintenance

Linux only

dWS

) Please complete the session sur

l'll"""'
S

E’.'iﬂ.rﬁﬂ't_"ﬂ-

Thank you ! o 1.1_'{.:._:|!|5i:.'_: I

Diego Voltz

Sr. Solutions Architect

Amazon Web Services Track: Application Modernizatio

diegovf@amazon.com . . ! . A
Session: Application Modernizati

to Microservices with Containers

© 2023, Amazon Web Services, Inc. or its affiliates.

