

AWS State, Local, and Education Miami Learning Days

Building a Modern Data Strategy

Gabriel Brackman

Sr. Solutions Architect Amazon Web Services brackmg@amazon.com Hina Siddiqui

Sr. Manager – Customer Solutions Amazon Web Services hinasid@amazon.com

Agenda

The data challenge

The opportunity

The modern data strategy journey

Modern data architectures on AWS

Sample reference architectures

How to get there

The data challenge

Availability of electronic data is growing exponentially

Data coming from new, disconnected sources

Increasingly diverse in file type and volume

Used by many people (e.g. policy makers, researchers, etc.)

Analyzed by many applications

A data-driven organization means...

Data is an organizational asset

No longer kept in silos or as the property of individual departments

Data is accessible

Available easily and securely to anyone who needs access to it

Data is put to work

Used in analytics and ML to make better decisions, create efficiencies, and drive new innovations

Create better business outcomes with data

Make better, faster decisions

Improve customer experience

Prepare for the future

Reduce costs and improve productivity

Modern data strategy for better business outcomes Start anywhere

A modern data strategy

Data at any scale

The best priceperformance

Seamless data access

Unified governance

Artificial Intelligence (AI) & Machine Learning(ML) to solve business challenges

Data lakes are foundational for data unification

To get more value from their data, customers are...

Breaking free from legacy databases

Moving to fully managed database and analytics services

Modernizing your data warehouse

Building modern applications with purpose-built databases

Purpose-built data services

Optimize performance, cost, and scale for your use cases

Amazon Athena Amazon EMR Amazon OpenSearch Service Amazon Kinesis and Amazon MSK Amazon Redshift

Interactive query

Big data processing

Log and search analytics

Real-time analytics

Data warehousing

Build new experiences and reimagine old processes with AI/ML

- Make accurate predictions, get deeper insights from your data, and improve customer experience
- Create ML predictions without any ML experience or writing any code
- Build applications with our pre-trained models
- Train and apply your own models
- Use your own algorithms by working directly with ML-optimized AWS infrastructure
- 100,000+ customers use AWS AI and ML services to make predictions from their data

Putting it all together

Key components of modern data architecture

Key considerations:

Ability to handle the increasing volume, velocity, and variety of data

Each component should be independently scalable

Make data easily accessible and sharable

AWS data lakes provide a flexible foundation for analytics and innovation

Data catalog

Crawls and catalogs your data; discover, prepare, and combine data for analytics and ML

Data governance

Centralized authorization layer to define data sources and data access & security policies

Structured data

Data that are highly normalized with common schema and stored in relational databases, powering transactional line-of-business applications

Semistructured data

Unstructured data

Data that do not conform to a data model and are typically stored as individual files

Data collection

Purpose built databases for different workloads

QLDB

Batch load

Extracts data from various data sources at periodic intervals and moves them to the data lake

AWS

AWS Transfer Family

Streaming

Ingests data that are generated from multiple sources such as log files, telemetry, mobile applications, and social networks

Amazon **Kinesis**

Amazon S3 data lake

Cloud-scale centralized and scalable architecture that enables enterprise data science

Amazon S3

Analytics

Leverage data warehouses, Spark, and graph databases to gain insights from vour data

Redshift

And data stored in the data lake can also be made directly searchable and queryable

Amazon Athena

OuickSight

Machine Learning

Storing data in an Amazon S3 data lake enables customers to leverage predictive or prescriptive analytics; perform ad-hoc analyses; and use AI/ML for automation and efficiency

SageMaker

Transcribe

Personalize

Security - Reliability - Operational Excellence - Performance Efficiency - Cost Optimization

Sample reference architecture for disease surveillance

Sample architecture for AI/ML machine learning

Use serverless and event-driven architectures for automatic scale to enable faster insights without the need to manage infrastructure

Extend the capabilities of your data warehouse with a modern data strategy on AWS

A lake house approach on AWS makes it easy to access data across applications, repositories, and lines of business to gain deeper insights

Operational databases

Query live data, maintain materialized views

Secured with Lake Formation Glue Catalog as metadata store

Amazon S3 data lake Keep up to exabytes of data in S3

standards-based data formats

Get started

BUILD WITH US

Data Lab

ML Solutions Lab

AWS Professional Services

AWS Immersion Day

Data-Driven Everything

Migration Assistance Program

BUILD WITH PARTNERS

AWS Partner Network— 100,000+ partners AWS Marketplace (ISVs)

UPSKILL YOUR TEAMS

AWS Training and Certification

ML Embark Program

Thank you!

Gabriel Brackman brackmg@amazon.com

Please take the survey:

Data & analytics track
Building a modern data strategy

448 ZB

of data will be created, consumed, and stored in next three years

Statistic provided by <u>Statista.com</u>

20 million times

AWS data lakes provide a flexible foundation for analytics and innovation

Data catalog

Crawls and catalogs your data; discover, prepare, and combine data for analytics and ML

Data governance

Centralized authorization layer to define data sources and data access & security policies

Structured data

Data that are highly normalized with common schema and stored in relational databases, powering transactional line-of-business applications

Semistructured data Data that contain identifiers without conforming to a predefined schema

Unstructured data

Data that do not conform to a data model and are typically stored as individual files

Data collection Purpose built databases for different workloads

QLDB

Batch load

Extracts data from various data sources at periodic intervals and moves them to the data lake

AWS

Streaming

Ingests data that are generated from multiple sources such as log files, telemetry, mobile applications, and social networks

Amazon **Kinesis**

Amazon S3 data lake

Cloud-scale centralized and scalable architecture that enables enterprise data science

Amazon S3

Analytics

Leverage data warehouses, Spark, and graph databases to gain insights from vour data

Redshift

Amazon

And data stored in the data lake can also be made directly searchable and queryable

Machine Learning

Storing data in an Amazon S3 data lake enables customers to leverage predictive or prescriptive analytics; perform ad-hoc analyses; and use AI/ML for automation and efficiency

Transcribe

®

Personalize

Sample reference architecture for Syndromic Surveillance

Sample architecture for AI/ML Machine Learning

Use serverless and event-driven architectures for automatic scale to enable faster insights without the need to manage infrastructure

Extend the capabilities of your data warehouse with a Modern Data Strategy on AWS

A lake house approach on AWS makes it easy to access data across applications, repositories, and lines of business to gain deeper insights

Operational

databases

Query live data,

maintain

materialized views

Insights from Audio - High Level Process

Text extraction - High Level Process

Extract and analyze data from documents

Amazon Textract, Amazon Comprehend, and Amazon Augmented Al

IDP reference architecture example

Document management challenges

DIVERSE CONTENT

Tables, paragraphs, logos, handwriting, and different languages

DOCUMENTS SOLVE DIFFERENT PROBLEMS

Text may be required for many reasons...

Uncovering insights

- ✓ Data Lakes
- ✓ Operational, data needs
- ✓ Chatbots
- ✓ Knowledge management

Document processing challenges

Extracting text manually is time-consuming, error prone, and expensive

Manual processes do not scale easily with document volume

Current rules-based systems are not intelligent and break with format changes

New documents = new OCR templates = intensive effort = long lead time

For most organizations, data in documents remains unstructured and unavailable to generate business insights

AWS is the best place to extract value from data and turn it into insights

The most experience

The most reliable, scalable, secure

The most comprehensive set of services

Additional References

Minnesota Department of Health Data Lakes Video Case Study

Minnesota Department of Health – Public Sector Summit

A Healthier future for North Carolina - re:Invent

UDSA SNAP Case study

<u>Utah Mainframe Modernization</u>

Georgia Department of Community Health MMIS migration

Rhode Island Department of Labor - Citizen engagement

Utah Department of Health COVID response

<u>Piedmont Healthcare – Epic Systems migration</u>

Great Lakes Health Connect

State of Maryland transforming social service - MDThink

NYC COVID-19 Response Coalition

<u>Minnesota Department of Human Services – PEBT program</u>

UC Dan Diego - Using ML to detect pneumonia

Please complete the session survey by scanning the QR code

Mission Track Modern Data Strategy

